
Proceedings of Machine Learning Research 176:41–52, 2022 NeurIPS 2021 Competition and Demonstration Track

Insights from the NeurIPS 2021 NetHack Challenge
Eric Hambro*+ ehambro@fb.com

Sharada Mohanty*= mohanty@aicrowd.com

Dmitrii Babaev#? babaev@airi.net

Minwoo Byeon$ minu@kakaobrain.com

Dipam Chakraborty= dipam@aicrowd.com

Edward Grefenstette+! egrefen@fb.com

Minqi Jiang+! msj@fb.com

Daejin Jo$ daejin.jo@kakaobrain.com

Anssi Kanervisto< anssi.kanervisto@uef.fi

Jongmin Kim$ jmkim@kakaobrain.com

Sungwoong Kim$ swkim@kakaobrain.com

Robert Kirk! robert.kirk.20@ucl.ac.uk

Vitaly Kurin" vitaly.kurin@cs.ox.ac.uk

Heinrich Küttler+ hnr@fb.com

Taehwon Kwon$ taehwan.kwon@kakaobrain.com

Donghoon Lee$ dhlee@kakaobrain.com

Vegard Mella+ vegardmella@fb.com

Nantas Nardelli" nantas.nardelli@gmail.com

Ivan Nazarov? nazarov@airi.net

Nikita Ovsov# ovsov.n.p@sberbank.ru

Jack Parker-Holder" jackph@robots.ox.ac.uk

Roberta Raileanu+ raileanu@fb.com

Karolis Ramanauskas- karolis.ram@gmail.com

Tim Rocktäschel+! rockt@fb.com

Danielle Rothermel+ drotherm@fb.com

Mikayel Samvelyan+! samvelyan@fb.com

Dmitry Sorokin? sorokin@airi.net

Maciej Sypetkowski- maciej.sypetkowski@gmail.com

Micha l Sypetkowski- m.sypetkowski@gmail.com

Editor: Douwe Kiela, Barbara Caputo, and Marco Ciccone

Abstract

In this report, we summarize the takeaways from the first NeurIPS 2021 NetHack
Challenge. Participants were tasked with developing a program or agent that can win
(i.e., ‘ascend’ in) the popular dungeon-crawler game of NetHack by interacting with the
NetHack Learning Environment (NLE), a scalable, procedurally generated, and challenging
Gym environment for reinforcement learning (RL). The challenge showcased community-
driven progress in AI with many diverse approaches significantly beating the previously best
results on NetHack. Furthermore, it served as a direct comparison between neural (e.g.,
deep RL) and symbolic AI, as well as hybrid systems, demonstrating that on NetHack
symbolic bots currently outperform deep RL by a large margin. Lastly, no agent got close
to winning the game, illustrating NetHack’s suitability as a long-term benchmark for AI
research.

Keywords: Reinforcement Learning, Open-ended Learning, Generalization, Procgen, Game
AI, NetHack

© 2022 E. Hambro et al.

Hambro et al.

1. Introduction

Progress in artificial intelligence research requires benchmarks that test the limits of current
methods. To this end, the NeurIPS 2021 NetHack Challenge was a competition to drive
the open benchmarking of current sequential decision-making methods on the NetHack
Learning Environment (NLE, Küttler et al., 2020). NLE is a fully-featured Gym environment
(Brockman et al. (2016)) based on the popular open-source terminal-based single-player
procedurally-generated “dungeon-crawler” game, NetHack (Raymond (1987); Kenneth Lor-
ber (2020)).

Aside from procedurally generated content, NetHack is an attractive research platform
as it contains hundreds of enemy and object types, has complex and stochastic environment
dynamics, and has a clearly defined goal (descend the dungeon, retrieve an amulet, and
ascend) which can be achieved in a diverse set of ways. The game is considered one of the
hardest in the world1, with winning episodes lasting 100,000s of steps, and a permadeath
setting that starts agents at the beginning in a whole new world if they die in the dungeon.
NetHack is even difficult to master for human players who often rely on external knowledge,
such as the many extensive community-created documents outlining various strategies for
the game (NetHack Wiki (2020); Eva Myers (2020)), to learn about strategies and NetHack’s
complex dynamics and secrets.

NetHack has a long history of online tournaments, often played on various competition
servers. The longest running of these is the /dev/null/nethack tournament2 which ran
every year from 1999 to 2016 and has now been superseded by the November NetHack
Tournament.3 While bots are forbidden from entering this tournament, the community still
has a large history of creating symbolic bots, such as SWAGGINZZZ (2019), TAEB (2015),
BotHack (2014). In the past, these bots have often made progress by exploiting bugs or
weaknesses in the earlier versions of the game that have since been removed by the game
developers. To the best of our knowledge, no bot has ever ascended in the most recent
version of the game, NetHack 3.6.6.

At NeurIPS 2021, we challenged participants to either train a machine learning agent or
hard-code a symbolic bot to win the game of NetHack. In this report, we present in-depth
analyses of the main results of this challenge, in particular i) the community-driven progress
in AI for NetHack compared to the previous state-of-the-art, ii) the current dominance of
symbolic bots over deep RL approaches, and iii) the difficulty and complexity of NetHack
leading to none of the participating agents getting close to winning the game.

2. Competition

In this section, we describe the NLE environment to which participants had access to, as
well as the evaluation metrics and competition structure.

*Lead organizers. Author ordering for the other authors is alphabetical. +Facebook AI Research
=AIcrowd !University College London "University of Oxford #Sberbank AI Lab ?AIRI $KakaoBrain
<University of Eastern Finland -Independent

1. https://www.telegraph.co.uk/gaming/what-to-play/the-15-hardest-video-games-ever/
nethack/

2. https://nethackwiki.com/wiki//dev/null/nethack_tournament
3. https://www.hardfought.org/tnnt/

42

https://www.telegraph.co.uk/gaming/what-to-play/the-15-hardest-video-games-ever/nethack/
https://www.telegraph.co.uk/gaming/what-to-play/the-15-hardest-video-games-ever/nethack/
https://nethackwiki.com/wiki//dev/null/nethack_tournament
https://www.hardfought.org/tnnt/

The NeurIPS 2021 NetHack Challenge

2.1. Environment

We created the new NLE task, “challenge”, for the competition, in order to expose the full
game of NetHack 3.6.6 in all its complexity. This environment expanded the action space
from 23 to 113 actions (the full keyboard), removed the autoclosing of popups, and allowed
all forms of input modality. It expanded the observation space to be as broad as possible,
including structured observations like glyphs, message and blstats, inventory observations
like inv strs and inv glyphs, as well as the raw terminal outputs in ttychars, ttycolors,
ttycursor which is what human players have access to when playing NetHack. Finally,
this environment enforced rotation of the starting character’s race, role, alignment and
gender. This in particular presented a much harder challenge to competitors than the
previous character-specific NetHack score task in (Küttler et al., 2020), thus incentivising
the development of general agents instead of character-specific approaches.

We released challenge in NLE v0.7.0, and improved it with minor bug fixes over the
first month of the challenge, before freezing at v0.7.3. All evaluations were run on v0.7.3.

2.2. Metrics

Submission performance was measured with a tuple of three statistics calculated over the
test episodes. These statistics were, in order of tie-breaking: number of ascensions, median
in-game score, and mean in-game score. While the in-game score does not directly corre-
spond to making progress towards ascension, it does generally correspond to good play. As
evidence, the minimum score needed for ascension is 12,200, but the average ascending run
score is 6.98 million.4 However, this correlation does not always hold—some expert players
attempt to ascend while, in fact, minimizing the score. Full details of the score methodology
can be found on the NetHack Wiki.5

2.3. Competition Structure

Thanks to our sponsors, Meta AI and DeepMind, the competition was able to award
$20,000 in prizes to competitors, across 4 different tracks. These tracks were: Best Over-
all Agent, Best Neural Agent,6 Best Symbolic Agent,7 and Best Agent from an Academic
Lab/Independent Researcher(s). This was designed to incentivise a showdown between sym-
bolic and deep RL methods since Tracks 2 and 3 were mutually exclusive, but otherwise,
single teams could win multiple tracks. Given the suitability of NLE as a “computation-
ally cheap” Grand Challenge, we also sought to incentivise submissions from independent
researchers or academic labs.

The competition was divided into two phases: a development phase, running June to
October, and a test phase, for the last two weeks of October. Only the top 15 entries for each
track qualified for the test phase. In the development phase, we evaluated on 512 episode
rollouts, within a 2-hour window, and in the test phase, three submissions were evaluated on
4,096 episode rollouts, over a day. This allowed competitors to evaluate different approaches

4. Calculated from a sample of 20,000 ascending human runs from alt.org
5. https://nethackwiki.com/wiki/Score
6. Referred to as ”Best Agent Making Substantial Use of a Neural Network” on aicrowd.com
7. Referred to as ”Best Agent Not Making Use of a Neural Network” on aicrowd.com

43

https://nethackwiki.com/wiki/Score

Hambro et al.

Figure 1: Final Rankings of Top 8 Teams

over the bulk of the competition but allowed us to whittle down competitors to a manageable
number for a thorough final evaluation.

2.4. Evaluation Setup

The AIcrowd platform was the technological centre of the competition. AIcrowd hosted a
starter kit on their GitLab instance, with a TorchBeast (2019) training pipeline, two pre-
trained models, and a submission pipeline. They also hosted the leaderboard, a discussion
forum and demo Colab notebooks. Most crucially they hosted an automated evaluation
service and provided team members with feedback on their performance. More details on
the evaluation setup can be found in Appendix A.

3. Results & Discussion

In this section, we summarize and discuss the results of the NeurIPS 2021 NetHack Chal-
lenge. Overall, the NetHack Challenge ran for 144 days, with 483 entrants registering for
the competition, and 631 submissions received over that time.

3.1. Competition Results

As mentioned in Section 2, the competition was divided into two phases. In Phase 1, 28
entrants beat the official IMPALA baseline, and 17 passed through to Phase 2. Of these
Phase 2 entrants, 8 entrants beat the IMPALA baseline by a significant margin (33%+),
and the rankings and prizewinners are shown in Figure 1.

44

The NeurIPS 2021 NetHack Challenge

The results demonstrate that symbolic approaches currently significantly outperform
machine learning, and in particular deep RL-based agents. The top three places in the
Overall Best Agent all went to agents from the Symbolic Agent Track, and the winning
Neural Agent (RAPH) was a hybrid model, making heavy use of symbolic methods and a
neural network. Symbolic bots outperformed other approaches by a significant margin: the
best symbolic bot’s median score was nearly threefold that of the neural bot’s. This lead
extends fivefold when looking at the top-scoring episode from each track. Nonetheless, deep
reinforcement learning bots made significant progress, offering a nearly fivefold improvement
in median score over our NeurIPS 2020 baseline (Küttler et al., 2020). Overall, these results
demonstrate significant community-driven progress on AI for NetHack.

3.2. Analyzing Agent Behavior

To get a better understanding of the results, we analysed the trajectories of all three “final
round” submissions from the Phase 2 finalists. In particular, we looked at: score distri-
butions by role; dungeon level exploration frequencies; most common causes of death; and
other statistics like maximum armor class change, or episode length. More details can be
found in Appendix B.

We found that the performance of all agents was significantly tied to their starting role
and that such performance was often very heavy-tailed (see Figure 5 in Appendix B). For
instance, “easy” starting roles like Barbarian, Monk, Samurai and Valkyrie would often
have a higher median score than “harder” roles like Healer, Rogue, Tourist and Wizard,
and also a much higher top score.

Since submissions were heavily incentivised to focus on their below-average characters,
we noticed many strategies catered to this directly. We sometimes saw behaviours such as
early termination of episodes beyond a certain internal score so as not to run down the clock
(see Figure 7 in Appendix B), or the intentional restriction of the agent to the top-level
dungeons (see Figure 6 in Appendix B). While the latter behaviour protects weak characters
from dangerous monsters, it also likely contributes to the very high incidence of death due
to “fainted of starvation” (see Figure 8 in Appendix B) since agents can run out of food
easily if they do not explore the dungeon.

Although the winning agent set a new record for NLE, achieving a median score of 5,300,
this is considered only just above a Beginner8 score. This low result can be explained by
the serious challenge posed by playing with difficult roles; outliers in the “easy” characters
performed orders of magnitude better. For instance, 1 in 20 of the winning agent’s Valkyries
would get a score greater than 30,000, descend to dungeon level 10, and get to experience
level 10 (typically not all in the same run). However, this is still far short of ascension,
which requires the completion of a quest, around 50 dungeon levels, and the accumulation
of various special items. This gap demonstrates the difficulty of designing agents that can
deal with all the dangers in the complex world of NetHack and win the game.

8. A “Beginner” score is defined by the NetHack Wiki to be less than 2,000, or 1,000 for a Wizard, according
to https://nethackwiki.com/wiki/Beginner

45

https://nethackwiki.com/wiki/Beginner

Hambro et al.

3.3. Symbolic vs. Neural Approaches

The NetHack challenge was designed to incentivise competition between neural and symbolic
agents. This year, symbolic methods won, with notable advantages in multiple areas.

Participants building symbolic bots found it easy to define ‘strategy’-like subroutines,
thereby incorporating their domain-knowledge of NetHack into their bots. These bots
were often equipped with elaborate routines for deciding when to exercise certain behavior
based on rich, human-legible representations of the game state. Such large subroutines
were found in all the top symbolic entries, which often had explicit strategies in code like
“Find Minetown”. This strategic play is very useful in the complex world of NetHack. In
contrast, neural agents struggled in the area since hierarchical RL is still an open research
problem. It is hard for agents to discover ‘strategy’-like behaviour patterns in environments
with a large action space and sparse reward. Moreover, it is unclear how to best provide
RL agents with human prior knowledge about such strategies, for example, information
from the NetHack Wiki (like armour strength or monster abilities). Lastly, symbolic bots
excelled at leveraging long-term relationships in the game to contextualize and refine their
behavior. In contrast, learning long-term relationships and performing credit assignment
are still open problems in deep RL.

4. Approaches

In the following section, we first present the baselines made available to competitors, and
then a description of the best performing symbolic, hybrid and neural entries by the teams
themselves.

4.1. Baselines

Two baselines were made available to competitors over the course of the competition, specif-
ically for the neural track. These baselines formed the basis of the vast majority of sub-
missions, which were all high-throughput model-free policy gradient methods. No baselines
were prepared for the symbolic track, meaning that all such solutions were coded from
scratch, often spanning to many thousands of lines of code.

4.1.1. TorchBeast Baseline

The TorchBeast baseline is a modified version of the method presented in the original
NeurIPS 2020 paper (Küttler et al., 2020), which is an implementation of IMPALA (Espe-
holt et al., 2018) in the open-sourced RL framework TorchBeast (2019). This model uses
the glyphs, blstats, and message observations as inputs. The glyphs are factorised and
embedded before passing into a CNN, while the message is encoded with a character CNN
and the blstats is encoded with a feedforward neural network. These are all encoded
and passed to an LSTM, that produces baseline and policy heads, albeit in a restricted
action space. The architecture is shown in Figure 2. This baseline was released with the
starter-kit9 along with versions of the model trained for 0.25B and 0.5B steps.

9. https://gitlab.aicrowd.com/nethack/neurips-2021-the-nethack-challenge

46

https://gitlab.aicrowd.com/nethack/neurips-2021-the-nethack-challenge

The NeurIPS 2021 NetHack Challenge

Figure 2: Neural network model used by
the TorchBeast baseline

tty_chars
tty_colors RGB image Nature DQN

CNN

blstats Normalize FC NN

(128, 128)

GRU

512 units

Value

Action
(n=113)

message FC NN

(128, 128)

Figure 3: Neural network model used by the
Sample Factory baseline.

4.1.2. Sample Factory Baseline

During the competition, the team ‘Chaotic Dwarven GPT-5’ open-sourced10 a new baseline
solution based on the Sample Factory (Petrenko et al., 2020) framework with asynchronous
PPO and a RNN layer. This baseline is more performant than the TorchBeast baseline,
reaching a mean score of approximately 700 (vs 400) with under 24 hours of training on a
single RTX 2080Ti with 480 parallel NLE environments. This improved performance further
lowered the barrier of entry for participants with weaker machines or fewer resources.

Instead of embedding the glyphs, this baseline renders the state as an RGB image,
similar to what a human player sees on a cropped terminal screen. While this discards
important details, like the specific monster types, the use of traditional convolutional layers
speeds up training and allows agents to learn the associations of colors and shapes. Figure 3
details the network structure, which also uses blstats and the message observation.

One shortcoming of this baseline is the inability to learn the complex behaviour required
by roles such as Tourist, Healer and Wizard, for which it achieves a low score. Another
shortcoming is that the learning process is relatively slow as the agent is often stuck explor-
ing different menus instead of making progress on the game itself.

4.2. Competitor Approaches

We now present the best symbolic, hybrid and neural approaches, described by the teams
in their own words.

4.2.1. Team AutoAscend: Symbolic

There are two main parts to our framework:

Parsing and maintaining the knowledge about the game state. This consists of
parsing ASCII pop-ups, remembering dungeon level state including non-current levels, using
commands like #terrain to check covered objects by items and seen traps, keeping track
of monsters including peaceful monsters, inventory and contents of the hero’s bag, etc.

10. See https://github.com/Miffyli/nle-sample-factory-baseline, maintained by co-authors Anssi
Kanervisto and Karolis Ramanauskas.

47

https://github.com/Miffyli/nle-sample-factory-baseline

Hambro et al.

Decision making. We implemented a custom variation of a behaviour tree capable of
dynamic tree expansion, including recursions. Strategies are selected based on the current
game state.

NLE actions correspond to single keystrokes and therefore their behaviour depends on the
context. For instance, to throw a projectile one usually needs to press 3 keys: ‘t’ to initiate
the throw action, a letter representing an item in the inventory, and a letter representing a
direction. We implemented an additional level of abstraction to wrap many of such actions
to make the solution more robust and easier to develop.

We introduced the abstraction of a strategy which comprises logic that handles a specific
behaviour and usually consists of multiple actions, e.g., move to a given (x, y) position, or
solve a Sokoban map. The idea behind strategies is their non-atomic nature and that they
may be interrupted under specific conditions, e.g., the ‘level exploration’ strategy should
be interrupted when noticing a monster in favour of the ‘combat’ strategy, which in turn
should be interrupted by the ‘emergency healing’ strategy. Throughout the competition,
we developed multiple strategies together with the conditions of when they should activate.

One example of a more complex strategy in our solution is combat, which is priority
based. We defined a simplified action space with 4× 8 + 2 = 34 actions: movement, melee
attack, ranged attack, and ray wand zap – all in 8 directions; write “Elbereth”, and wait. We
implemented a heuristic scoring function that assigns a score to every possible action; the
one with the highest priority is subsequently executed. As a simplification, we always use
the best available melee weapon, projectile, launcher, etc. taking into account properties
like damage, to-hit bonus and the hero’s weapon proficiency. For future work, there is huge
potential in improving the action scoring algorithm with more advanced methods, such as
an RL model trained on this simplified action space.

Another example of a strategy that resulted in a significant improvement, especially for
non-combat oriented roles, is nutrition management. We use the following three rules which
we found efficient: (1) eat fresh and safe-to-eat corpses from the ground until “satiated”;
(2) if there are no such corpses, eat food rations gathered during exploration from the
inventory in case the hunger state is “hungry” or worse; (3) as a last resort, pray when the
hunger state is “fainting”, but no more often than 500 turns after the previous prayer.

A more detailed list of strategies, behaviours, and features is presented in Appendix C,
along with an image of the custom visualization and debugging tool we developed.

4.2.2. Team RAPH: Hybrid

We decided to apply a hierarchical approach to the challenge and construct an agent’s policy
from basic skills dedicated to solving concrete tasks: eating, fighting, dungeon exploration,
and inventory management. The approach closely resembles the options framework of
Sutton et al. (1999), in which a higher-level policy orchestrates the execution of eligible
lower-level options until termination. This modularity allows us to build a hybrid neural-
algorithmic method, where some skills can be trained, and others – hard-coded. In our case,
we opted for a simplified higher-level policy and implemented it as a rule-based algorithmic
decision system, that executes a lower-level skill on a first-fit basis. The priority and triggers
of each skill were designed manually and determined based on our expert knowledge of
rogue-likes and essential game AI.

48

The NeurIPS 2021 NetHack Challenge

One of the most important and complex skills, which accounts for the bulk of in-game
score, is battling monsters. Fighting and combat require a complex policy to assess the
surrounding topology of the level and choose an appropriate action: approach, outflank,
avoid getting surrounded, decide on a melee or ranged attack, heal, wait or flee. To this
end we train a deep neural RL agent based on the TorchBeast baseline, provided in Küttler
et al. (2020), to learn a policy for the lower-level fighting skill. The agent has a discrete
action space containing eight actions for directional movement or melee attacks, another
eight actions for directional ranged attacks, and three actions for hard-coded composite
controls such as waiting, praying and engraving “Elbereth”, the latter warding off low-
level aggressive monsters. The neural policy uses hand-crafted features related to the map,
monster, and hero’s vitals, extracted by the lower level algorithmic dungeon level mapping
subsystem of the agent. We implement other skills as hard-coded algorithmic policies based
on graph navigation algorithms and expert knowledge.

To train the agent we construct episodes by pasting contiguous fragments with tran-
sitions in which there is a hostile monster within the field-of-view of the agent. In other
words, the steps performed by all other skills are “fast-forwarded”, which makes the envi-
ronment a partially observed semi-Markov decision process from the point of view of the
agent, (Sutton et al., 1999). The inference of our RAPH agent works as presented in the
Appendix, in algorithm 1. If necessary, we first handle pending NetHack’s GUI events,
such as responding to multi-part message logs. Next, we parse and update the dungeon
representation and extract the features for the neural agent. Finally, we sample actions
from either the RL agent or the hard-coded skill, whichever one currently holds control,
taking into account the distance to the nearest monster.

Analysis of a trained policy shows that move or melee attack actions are used in 66% of
steps, range attack in 21.6%, wait in 11%, “Elbereth” in 0.3%, and pray in 0.1%.

4.2.3. Team Kakao Brain: Neural

Our method is based on the V-trace actor-critic framework, IMPALA (Espeholt et al.,
2018), which we used to optimize a policy network through end-to-end RL training from
scratch. Here, we briefly describe our approach from the perspectives of 1) observation
encoding, 2) separated action spaces, 3) network structure and 4) role-specific training. We
provide more details in Appendix E.

First, we encode messages, glyphs, and an extended blstats as input observations.
We also encode the information of usable items, pickable items, and spells, summarized in
Figure 4, so we can explicitly utilize items and spells. Second, we separate the action space
into action-type, direction, use-item, pick-item, and use-spell. In the original action space, a
single action can be used for different meanings according to the game status. For example,
key ‘a’ (action 24) is used for applying tools as well as for selecting an item or a spell. Our
separated and somewhat hierarchical action space clarifies the meaning of each action and
also reduces the whole space to the valid action space at each time.

Our network structure is depicted in Figure 11 in Appendix E. The encoded glyphs are
fed to the CNN while the other observations including tokenized messages and extended
blstats are fed to the MLPs. These features as well as the last action type are then
concatenated into the GRU network (Cho et al., 2014) for exploiting past information.
Moreover, we use Transformer (Parisotto et al., 2020) to combine the GRU output with the

49

Hambro et al.

Figure 4: Observation Encoding of Team KakaoBrain: one-hot encoding for glyph group
and object class, and binary encoding for id.

information of usable items, pickable items, and spells. The transformer output is then fed
to the value head and the multiple policy heads according to the separated action spaces.

To encourage role-specific strategies, we make use of role-specific agents trained by role-
specific reward shaping. We maintain such agents for Healer, Ranger, Rogue, Tourist, and
Wizard while the universal agent is used for the other roles. Each policy trains for 10B
steps on 4 nodes, with 224 CPU cores and 16 V100 GPUs in total. We modify Sample
Factory (Petrenko et al., 2020) for a throughput of 100K frames per second.

5. Conclusion

The Challenge produced significant progress in NetHack, including a 5× improvement in
deep RL approaches, and a new open-source baseline. It also provided a valuable point of
comparison for neural (deep RL) and symbolic methods, with symbolic bots achieving 3×
the median score of deep RL bots in the dungeon. Notably, the game remains unsolved.
The best agents’ median score is several orders of magnitude short of a typical (human)
‘ascension’. As argued in Küttler et al. (2020), the NLE environment is at the frontier for
RL research and it remains to be seen which methods will be able to scale to the point of
reliably beating the game.

Future challenges should focus on refining evaluation metrics, such that the ranking of
agents better reflects progress in the game. This year many teams indulged in strategies
that optimised in-game score at the expense of progressing into the dungeon for ascension.
It is possible a new metric, perhaps involving the checkpointing of achievements (as is done
for Junethack11) may be more successful in steering agents to ascension. Future challenges
may also seek to proactively encourage teams to exploit external knowledge (e.g., from the
NetHack Wiki, or possibly ‘source-diving’ into NetHack’s C code), learn from recordings of
human play (e.g., ttyrec game replays from alt.org), or test skill acquisition (e.g., using
MiniHack (2021)). These are all areas of research that fit naturally into NetHack’s ecosystem
and pose challenges that would benefit from open competitive benchmarking.

11. https://nethackwiki.com/wiki/Junethack/FAQ#Achievements_.2F_Trophies

50

https://nethackwiki.com/wiki/Junethack/FAQ#Achievements_.2F_Trophies

The NeurIPS 2021 NetHack Challenge

Acknowledgments

The organisers would like to thank Meta AI, DeepMind and AIcrowd for their generous
sponsorship of this project.

References

Jan Krajicek. BotHack. https://github.com/krajj7/BotHack, 2014. Accessed: 2022-02-
04.

Aransentin Breggan Hampe Pellsson. SWAGGINZZZ. https://pellsson.github.io/,
2019. Accessed: 2020-05-30.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. CoRR, abs/1606.01540, 2016.

Kyunghyun Cho, B van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. In Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014, 2014.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed
deep-rl with importance weighted actor-learner architectures. In International Conference
on Machine Learning, pages 1407–1416. PMLR, 2018.

Eva Myers. List of Nethack spoilers. https://sites.google.com/view/

evasroguelikegamessite/list-of-nethack-spoilers, 2020. Accessed: 2020-06-
03.

Kenneth Lorber. NetHack Home Page. https://nethack.org, 2020. Accessed: 2020-05-30.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivaku-
mar, Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform
for Distributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/

facebookresearch/torchbeast.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Pro-
ceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

NetHack Wiki. NetHackWiki. https://nethackwiki.com/, 2020. Accessed: 2020-02-01.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al.
Stabilizing transformers for reinforcement learning. In International Conference on Ma-
chine Learning, pages 7487–7498. PMLR, 2020.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun.
Sample factory: Egocentric 3d control from pixels at 100000 fps with asynchronous rein-
forcement learning. In ICML, 2020.

51

https://github.com/krajj7/BotHack
https://pellsson.github.io/
https://sites.google.com/view/evasroguelikegamessite/list-of-nethack-spoilers
https://sites.google.com/view/evasroguelikegamessite/list-of-nethack-spoilers
https://nethack.org
https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast
https://nethackwiki.com/

Hambro et al.

Eric S. Raymond. A Guide to the Mazes of Menace, 1987.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric
Hambro, Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel.
Minihack the planet: A sandbox for open-ended reinforcement learning research. CoRR,
abs/2109.13202, 2021. URL https://arxiv.org/abs/2109.13202.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112
(1-2):181–211, August 1999. doi: 10.1016/s0004-3702(99)00052-1. URL https://doi.

org/10.1016/s0004-3702(99)00052-1.

TAEB. TAEB Documentation: Other Bots. https://taeb.github.io/bots.html, 2015.
Accessed: 2020-01-19.

52

https://arxiv.org/abs/2109.13202
https://doi.org/10.1016/s0004-3702(99)00052-1
https://doi.org/10.1016/s0004-3702(99)00052-1
https://taeb.github.io/bots.html

	Introduction
	Competition
	Environment
	Metrics
	Competition Structure
	Evaluation Setup

	Results & Discussion
	Competition Results
	Analyzing Agent Behavior
	Symbolic vs. Neural Approaches

	Approaches
	Baselines
	TorchBeast Baseline
	Sample Factory Baseline

	Competitor Approaches
	Team AutoAscend: Symbolic
	Team RAPH: Hybrid
	Team Kakao Brain: Neural

	Conclusion

